Revealing Influences of Socioeconomic Factors over Disease
Outbreaks

S Mahmudul Hasan
1305043.sh@ugrad.cse.buet.ac.bd
Bangladesh University of Engineering
and Technology
Dhaka, Bangladesh

Ishrat Jahan Eliza
1605089@ugrad.cse.buet.ac.bd

and Technology
Dhaka, Bangladesh

Alabi Mehzabin Anisha
mehzabin@Knights.ucf.edu
University of Central Florida
Orlando, Florida, United States

Ishika Tarin
1805092@ugrad.cse.buet.ac.bd
Bangladesh University of Engineering Bangladesh University of Engineering

and Technology
Dhaka, Bangladesh

Rudaiba Adnin
1505032.ra@ugrad.cse.buet.ac.bd
Bangladesh University of Engineering
and Technology
Dhaka, Bangladesh

Sadia Afroz
1505030.sa@ugrad.cse.buet.ac.bd
Bangladesh University of Engineering
and Technology
Dhaka, Bangladesh

A.B. M. Alim Al Islam
alim_razi@cse.buet.ac.bd
Bangladesh University of Engineering
and Technology
Dhaka, Bangladesh

ABSTRACT

The recent Covid-19 pandemic elucidates the need for a better
disease outbreak analysis and surveillance system, which can har-
ness state-of-the-art data mining and machine learning techniques
to produce better forecasting. In this regard, understanding the
correlation between disease outbreaks and socioeconomic factors
should pave the way for such systems by providing useful indica-
tors, which are yet to be explored in the literature to the best of
our knowledge. Therefore, in this study, we accumulated data on
72 infectious diseases and their outbreaks all over the globe over a
period of 23 years as well as corresponding different socioeconomic
data. We, then, performed point-biserial and spearman correlation
analysis over the collected data. Our analysis of the obtained corre-
lations demonstrates that various disease outbreak attributes are
positively and negatively correlated with different socioeconomic
indicators. For example, indicators such as lifetime risk of maternal
death, adolescent fertility rate, etc., are positively correlated, while
indicators such as life expectancy at birth, measles immunization,
etc., are negatively correlated, with disease outbreaks that affect
the digestive organ system. In this paper, we find and summarize
the correlations between 126 outbreak attributes derived from the
characteristics of the 72 diseases in consideration and 192 socioeco-
nomic factors which is a novel contribution to the field of disease
outbreak analysis and prediction.
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1 INTRODUCTION

Disease outbreaks are not a recent phenomenon, they have been
around for a very long time [55]. The most recent example, the
Covid-19 pandemic, showed us how severely they can hamper
the day-to-day lives of citizens and as a result render the world
to a standstill. However, as the number of recurring disease out-
breaks increases, we accumulate more data regarding their dynam-
ics. Recent innovations in machine learning and data mining have
equipped the healthcare sector with new knowledge deriving from
the data accumulated over the past decades including the analysis
and surveillance of different disease outbreaks.

Several studies were conducted to predict as well as analyze the
causes of disease outbreaks [2, 7, 14, 45, 72, 95, 106, 110]. However,
a large scale study to find out the roles that socioeconomic factors
play over disease outbreaks is yet to be done. Such a study can help
us understand how different characteristics of disease outbreaks
are related to different socioeconomic factors. Besides, it can pave
the way for the development of better disease outbreak surveillance
systems that will incorporate socioeconomic data for its prediction
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and analysis. Finally, such a study can guide further incisive studies
to identify the roles socioeconomic factors play in triggering disease
outbreaks as well as how they are affected during such outbreaks.
Although some similar studies were conducted, they are either
limited in terms of the number of diseases they work with or the
locale of the outbreaks they took under consideration, or both
[7, 8, 12, 22, 76, 95].

In this paper, we accumulated data regarding the occurrences of
72 infectious diseases and their outbreaks and the socioeconomic
factors of the regions of the outbreaks. Then, we used point-biserial
and spearman correlation to find the nature and strength of the rela-
tionships between various socioeconomic factors and attributes of
outbreaks. Here, disease outbreak data is the name, place, and year
of the outbreak. We accumulated these data from WHO: Disease
Outbreak News [104]. Socioeconomic data include attributes such
as access to electricity, literacy rate, internet usage, etc., which we
collected from the World Bank Open Data [107]. Both of these data
are available on a global scale. Disease outbreak attributes are the
attributes of the corresponding diseases, which we gleaned from
fact sheets provided by WHO and CDC, and various other sources
such as Malacards, Mayoclinic, etc.

Thus, we encountered the following set of research questions
while conducting this study.

e RQ1: How can we accumulate relevant data to find the rela-
tionships between disease outbreak characteristics and so-
cioeconomic indicators from numerous online sources (e.g.,
WHO, CDC, etc.)?

e RQ2: How can we quantify the strength and nature of the
relationships between disease outbreak characteristics and
socioeconomic indicators? Based on the quantification, what
are the major trends over those relationships? What are the
primary socioeconomic indicators that influence a disease
outbreak?

Our study takes a large number of diseases and their outbreaks
as well as a large number of socioeconomic attributes into consid-
eration. In summary, our major contributions are as follows:

e We accumulated and cleaned a data set regarding disease
outbreak reports by scrapping WHO: Disease Outbreak News
[104], CDC [15, 105], from various informative websites such
as Malacards, Mayoclinic [30, 68], and from various other
sources.

e We considered 126 disease outbreak attributes derived from
the characteristics of the 72 diseases and 192 socioeconomic
factors. We performed large-scale point-biserial and spear-
man correlation analysis on the accumulated data to quantify
the strength and nature of disease outbreak attributes and
socioeconomic indicators relationships. We summarize the
nature and prevalent trends between the relationship of the
characteristics of different disease outbreaks with different
socioeconomic factors in a systematic way and made them
available which will benefit systems in predicting the effects
of disease outbreaks over socioeconomic factors.

e We find the primary socioeconomic factors for a disease
outbreak exhibiting a particular character. These make our
study a novel contribution to the field of disease outbreak
analysis and prediction.
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2 RELATED WORK

Recently, the healthcare sector saw a rapid increase in the number
of applications of data mining and machine learning techniques
because of the availability of data. Several notable studies were
done on disease outbreak prediction and analysis, and some of them
addressed the notion of the relationship between socioeconomic
factors and characteristics of different disease outbreaks.

The first plague, which was called the "Black Death’ killed up to
50 million people in Europe and the Mediterranean alone, making
it the second-worst pandemic in human history in absolute terms,
behind the 1917-1919 Spanish Influenza that killed between 50 and
100 million people. From the very beginning, relative to the rich, the
poor were very vulnerable to plagues because of their relatively un-
healthy living areas and very poor treatment during the epidemics
[3]. The 1918 Spanish Influenza pandemic holds a particular place
in medical history; it wiped out an estimated 1% of the global pop-
ulation and earned the dubious honor of being coined the "mother
of all pandemics” [63]. A seminal study revealed more than 30-fold
variation in 1918 pandemic excess mortality rates across a sample
of 20 countries, with socioeconomic factors explaining a significant
fraction of the observed variation. The role of socioeconomic dis-
parities on influenza mortality has remained a subject of debate in
the literature and is often confounded by the timing of arrival of the
pandemic virus in a given locale, climatic conditions, or population
density [17, 65]. A systematic review presents a meta-analysis on
the association between socioeconomic status and disease outcomes
in the last 5 influenza pandemics to document whether and to what
extent there is an association between indicators of socioeconomic
status (e.g. income, education) and pandemic outcomes (infection,
hospitalizations, mortality) in the last five influenza pandemics
(1889, 1918, 1957, 1968, 2009) [57]. Different socioeconomic status
and morbidity of the disease indicators came into light through
a rigorous data collection process named as pre-registered study
protocol. The findings showed that lower socioeconomic status
groups have the highest risks of the three considered pandemic
outcomes (infection, hospitalizations, mortality) [59, 75, 96]. An-
other spatially refined study pieced together historical maps of
pneumonia and influenza deaths reported during the lethal wave
of the pandemic in Chicago in October-November 1918, together
with archival census tract data, to analyze the relationship between
pandemic mortality and sociodemographic variables (including il-
literacy rate, homeownership, unemployment, population density,
and age). Pneumonia and influenza mortality rates were found to
increase on average by 32% for every 10% increase in illiteracy
rates. The findings align with contemporary studies demonstrating
how limited literacy and educational achievement hamper access to
preventive services [35]. In a study, both GAM and MLR statistical
techniques were employed to model the influences of meteorolog-
ical and socioeconomic conditions on the interannual variability
of cholera. It has been shown that increases in temperature, rain-
fall, poverty, and population density may increase both cholera
cases and deaths, while improvement of drinking water and adult
literacy might reduce the risk of contracting the disease [53]. Re-
searchers [12] also reviewed and documented epidemiological and
socioeconomic data on the outbreak of Cholera in Uganda. They
found that access to safe water, sanitation, and hygiene are the
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main factors for the outbreaks, and people who lack these are at
high risk of getting affected. They also found illiteracy and poverty
as other reasons for the spread of the outbreak. A study [22] on the
Cholera outbreak in Southern Ghana collected data on socioeco-
nomic, household hygiene, food, and water exposures. They found
that age below 18, education below tertiary, exclusive household
toilet facility, cold/warm food, homemade food, and community
pipe-borne water were associated with the outbreak. Researchers
[8] worked on finding socioeconomic and environmental factors
that affect the outbreaks of a mostly neglected yet epidemic-prone
zoonotic disease Leptospirosis. They identified municipalities with
lower socioeconomic status, i.e. lower household quality, low hy-
giene, higher extreme poverty, and illiteracy rates, as the main
drivers for the outbreaks. Animal-borne infectious diseases have
likely been precipitated by a complex interplay of changing eco-
logical, epidemiological, and socioeconomic factors. One recent
study develops an Environmental-Mechanistic model that captures
elements of each of these factors, to predict the risk of Ebola virus
disease (EVD) across time and space [78]. Another study also shows
the significant level of severity of Ebola alongside the Zika virus
among marginal people in low-income countries [48]. An analysis
of the cases between 2007 and 2017 of Dengue, Zika, and chikun-
gunya caused by arboviruses and transmitted by the mosquito
Aedes aegypti, confirmed three distinct Colombian municipalities
(Bello, Cucuta, and Moniquira) as three different ecosystems given
their contrasted geographic, climatic, and socioeconomic profiles.
Socioeconomic factors such as barriers to health and childhood ser-
vices, inadequate sanitation, poor housing, and poor water supply
in those areas were the fuels of disease transmission [64].

An early disease outbreak detection algorithm called WSARE
which uses healthcare data as well as information regarding de-
mographics, symptoms, etc. was discovered in a study [106]. Re-
searchers [72] used GoogleTrends2 [14, 33] to develop FluBreaks:
an early warning system for flu epidemics. Datasets from news and
internet media regarding dengue outbreaks were collected and used
for outbreak prediction [2]. A dengue outbreak prediction system
in Malaysia by augmenting rainfall data with dengue case data
is built which improved outbreak detection accuracy [110]. None
of these studies work on finding relationships between socioeco-
nomic factors and characteristics of disease outbreaks. Rather these
studies could possibly be improved if socioeconomic data were
augmented [110]. There are, however, some works that address the
aforementioned relationships but are limited by their local nature,
the number of socioeconomic factors they worked with, or both.
Further, a dengue outbreak detection mechanism was built in a
study [95]. In this work, the authors investigated the impact of
different socioeconomic factors on dengue outbreaks which they
found in their dataset. Researchers [7] conducted a study on Malaria,
Diarrhoea, and Pneumonia and their outbreaks to understand the
impact of different socioeconomic and environmental factors on
the outbreaks of these diseases. A similar study took place to review
how socioeconomic factors drive the outbreaks of dengue, chikun-
gunya, yellow fever, and Zika Virus and found a large variability
regarding the relationship between socioeconomic factors and the
most common Aedes-borne diseases [103]. A study [76] to find
out the effects of socioeconomic and environmental factors on the
outbreak of Dengue fever in China. They used statistical analysis
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to assess and detect the relevant factors and analyzed the impact of
those on the smallest administrative unit. Their analysis identified
six related factors representing urbanization, poverty, accessibility,
and vegetation. The findings of a review-based study suggest a gap
in the literature which indicates the need for additional research or
a better circulation of current findings regarding the relationship
between socioeconomic factors and the distribution of Ae. aegypti
[42].

Researchers investigated whether low socioeconomic status might
play a role in increased risk for infectious diseases. Therefore, they
analyzed the association between educational level and net house-
hold income, and serum IgG concentration (presence of antibody)
against measles, mumps, rubella, varicella, etc. collected within a
national cross-sectional survey (2006/2007) using linear regression
analyses among non-vaccinated individuals. The result indicates
that a higher educational level was associated with higher IgG
concentrations against measles and rubella compared to a low edu-
cation level. In contrast, higher education level was associated with
lower IgG concentrations against pneumococcus, MenC, and CMV
compared to low education level [41]. A similar type of study took
place to determine the variations in taking vaccination of mumps,
rubella, etc. A notable finding was over the 16 years studied, higher
levels of socioeconomic deprivation (Income, Employment, Edu-
cation Skills and Training, Crime, and Living Environment) were
consistently and strongly associated with lower uptake of MMR1
(measles, mumps, and rubella dose 1) and MMR2 vaccine. However,
poorer educational attainment, lower levels of employment, and
lower household income were also significantly associated with
lower uptake of both MMR1 and MMR2 [43].

One recent study has shown that the COVID-19 pandemic has
affected areas of the United States that are already institutionally
underprivileged. These areas shared content with negative expres-
sion, prayers, and discussion of the CARES Act economic relief
package while all the privileged areas were concerned with stocks,
social distancing, and national-level policies [89] Another study
illustrated that two social distancing measures, which are: travel
distance and stay-at-home dwell time, have a statistical relation-
ship with the growth rate of COVID-19 confirmed cases across
U.S. states. The statistical variation of the two social distancing
measures can be easily explained by socioeconomic and geographic
factors, including age groups, state policies, population density,
race and ethnicity, and median household income [31]. Though
Japan was less damaged than Europe by the COVID-19 pandemic,
one multidimensional review showed that socioeconomic crises
were created by the pandemic as the people in Japan are also suf-
fering from social isolation and the socioeconomic impacts of the
pandemic. As a decrease in income leads to an unstable lifestyle in
general, it might directly increase illness and decrease well-being,
without the mediating effect of the fear of COVID-19 [90]. While
Bangladesh was already in a COVID-19 crisis from the beginning
of the pandemic, one study warned that dengue and natural dis-
asters could worsen the situation, identifying key indicators of
risks exposures to COVID-19 including congested urban-focused
unsustainable vulnerability, demographic and social vulnerability,
economic and physical vulnerability, and recurrent disaster vulner-
ability, which listed the 20 most vulnerable districts out of total
64 [16]. Another study reveals the possible socioeconomic and
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environmental impacts of COVID-19 and finds medical waste to
have a large impact on the environment in recent years [9]. It also
concludes that densely populated countries are at higher risk of
COVID-19.

The aforementioned studies deal with finding environmental
and socioeconomic factors for different disease outbreaks. However,
most of these studies focused on an individual disease or a distinct
type of disease. None of the studies were done on a global scale.

3 RESEARCH METHODS

In general, we can split our data-driven study into the steps shown
in Figure 1. We accumulate, process, and combine required data
according to problem definition, and then, perform analysis. Finally
we summarize and interpret the results.

e Data Accumulation. A good data mining research depends
on credible data. For our study, we needed data on socioeco-
nomic conditions, data on disease outbreaks, and data on dis-
ease characteristics. WHO keeps track of disease outbreaks
in different parts of the world, on a yearly basis. When an
outbreak occurs, it publishes reports on the diseases involved
[104]. We accumulated our disease outbreak data from this
source. World Bank keeps track of different socioeconomic
factors of different countries on a yearly basis. We collect the
socioeconomic data from this data source [107]. We gleaned
data regarding attributes of the diseases in consideration
from various sources on the web. For example, we studied
various fact sheets provided by WHO and CDC [15, 105].
Besides websites such as Malacards, Mayoclinic, etc. also
alleviated the process [30, 68].

e Data Cleaning and Transformation Unprocessed data
contain various errors such as misspelling, repetition, mal-
formed contents, etc. The process of removing these errors
is known as data cleaning. Besides, we need to adapt the
data according to a particular data analysis procedure be-
fore we can use it in the analysis tool. This is called data
transformation. Now, we assembled data on different socioe-
conomic and environmental factors, disease outbreaks, and
disease characteristics. Disease outbreak data and disease
characteristics data were scrapped and manually collected
and therefore, needed cleaning to make them usable for our
computer program.

o Statistical Analysis After data is prepared, different statis-
tical and machine learning techniques can be used to extract
the pattern/relationships we are interested in. From the na-
ture of our data, we have determined that we can use simpler
techniques and therefore, decided to use Pearson and spear-
man correlation analysis [27, 51]. In correlation analysis,
a value of +1 indicates a strong positive relationship, and
a -1 indicates a strong negative relationship. A correlation
of 0 indicates no correlation. Our disease attributes data is
dichotomous in nature, whereas Pearson correlation is de-
fined for two continuous variables. Therefore, we used a
variant of Pearson correlation, point-biserial correlation [37]
which is defined for a continuous and a dichotomous variable.
Although spearman correlation is usually used for ordinal
dependent variables, we find that it can be used for binary
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variables too [83, 88]. Therefore, we additionally performed
Spearman correlation.

e Summarization and Analysis of Results Result analy-
sis is the final task of any data mining task. After we find
the correlations between different variables, we interpret
those. Because of our problem formulation, which will be
discussed later, we obtained massive-sized correlation tables
that needed to be broken down for analysis. We provide a
detailed analysis of our obtained correlation later.

3.1 Data Collection and Preparation

We have selected disease and attribute both at a country level.
World Bank provides data on different socioeconomic attributes
for almost all of the countries in the world each year [107]. We
have extracted 761 such attributes from this database about the
socioeconomic conditions of 264 places that include both individual
countries and general regions or groups of countries. The 264 places
that we get from the World Bank data are at national and regional
levels. These countries often have a shared history or regime, and
therefore, the world bank prefers to analyze their indicators not
only by individual countries but the regions as well [107]. Thus,
the notion of regions comes considering the unavoidable histori-
cal perspectives, which present few changes in country borders.
It appeared that the world bank prefers to analyze its indicators
not only by individual countries but the region as well [107]. The
indicators are self-explanatory and continuous in nature. Some of
them are — access to clean fuels and technologies for cooking (% of
the population), access to electricity, rural (% of rural population),
etc. A list of these attributes as well as corresponding interactive
distributions can be found in World Bank [108]. Although, World
Bank has data on the years 1960 - the current, Disease Outbreak
News only contains reports from the year 1995, and therefore, we
are considering the data for those years only.

We use web scrapping to acquire data from Disease Outbreak
News maintained by WHO. This data has three attributes: date,
disease, and country/region. We modified the date formats in case
of mismatches, fixed misspelled disease names, fixed country names
and made them consistent with the World Bank dataset, and re-
placed different region names with corresponding countries. Be-
sides, there were instances where some diseases were addressed
in different names. We read the related articles and made those
consistent. Usually, the aforementioned reports are created a few
days after an outbreak. As we are interested only in the year of the
disease outbreak, we process these report dates and keep only the
year. As a result, our disease outbreak dataset contains information
regarding ongoing disease outbreaks by year and country. In other
words, if a country had an ongoing outbreak in a certain year, we
have a row corresponding to the country, year, and disease. Figure 2,
3 and 4 depict the distribution of disease outbreak data by country,
year, and disease. Disease Outbreak News does not have any entry
before 1996. However, some of the entries in 1996 refer to ongoing
outbreaks which started in 1995. Therefore, we added a few entries
for those.

Finally, we need data on the characteristics of the diseases appear-
ing in the outbreak dataset. In total, we considered 72 diseases such
as yellow fever, zika, malaria, various strains of influenza (hini,
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Figure 3: Disease outbreak data by year.

h5n1), etc. The 72 Diseases are the diseases that appeared in the
WHO disease outbreak news [105]. There was no direct database for
all the disease symptoms in one place. Therefore, we have manually
collected those data. We garner data on 5 ordinal characteristics of a
disease — affected organ systems, symptoms, transmission methods,
carriers, and infectious agents. We acquired this information from
fact sheets provided by WHO and CDC [15, 105], from various in-
formative websites such as Malacards, Mayoclinic [30, 68], and from
various other sources. Here we briefly describe these attributes and
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their considered values. Figure 5 shows the distribution of all the
aforementioned disease attributes’ values.

e Almost every disease that causes outbreaks affects one or
more organ systems of the human body and therefore, this
information can be considered as an attribute of the disease
and the related outbreak. There are 11 major organ systems
in the human body, which we considered in our study -
cardiovascular, digestive, endocrine, urinary, integumentary,
lymphatic, muscular, nervous, reproductive, respiratory, and
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skeletal [20]. Besides, we added a N/A option that can be
used in cases where information is not available, or if the
disease does not affect any particular organ system.
Symptoms are the indicators associated with a disease in
general [66]. We considered a total of 74 symptoms and
general problems that can occur during the diseases in con-
sideration. Some of these symptoms are — abdominal pain,
anorexia, arthralgia, bleeding, cellulitis, chest pain, etc.
Transmission methods are the ways an outbreak usually
spreads. We considered 9 types of transmission methods —
air, animal to human, food contamination, indirect contact,
mosquito to human, human to human, water contamination,
pregnant women to baby, and genetics. We added N/A if we
did not find any specific transmission method.

Carriers are the animals that act as reservoirs for the disease
of an outbreak and help spread it. We identified a total of
25 carriers that carry the 72 diseases we are dealing with.
Some of these are - rodents, bats, camels, cattle, deer, dogs,
mosquitoes, etc. We added N/A if we didn’t find any specific
carrier.

Infectious agents are the substance that causes the disease.
We found 5 such infectious agents — bacteria, virus, fungi,
parasite, and prion. Most of the infectious diseases in con-
sideration are either viral or bacterial. Only a few of the
diseases are caused by fungi, parasites, or prions.
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3.2 Statistical Analysis

After accumulating all three kinds of data from their corresponding
sources, we need to combine them together for analysis. Figure 6
illustrates the steps for the whole process. First, we scrap WHO:
Disease Outbreak News website for the disease outbreak data. This
data contains information about diseases outside of our selected 72
as well as some outbreaks that are not infectious diseases at all (e.g.
unexplained cluster of deaths, melamine poisoning, unidentified
outbreak, etc.). Therefore, we remove these unwanted disease data.
World Bank data is available on yearly basis only. We cannot use the
day and month present in the 'Date’ attribute in disease outbreak
data and therefore, we discard those. As Disease Outbreak News
usually produces multiple reports regarding ongoing outbreaks, we
get a lot of duplicate rows containing the same year, country, and
disease. Now, we only need to know each year, what outbreaks
each country had. Therefore, we remove the duplicated rows to
extract this information. This is our final disease outbreak dataset.
It contains three attributes: Year, Country, and Disease (disease
name). Next, we obtain data regarding 761 socioeconomic indicators
(including Year, Country) from World Bank. After examining the
values for these indicators we find that a good number of attributes
have a lot of missing values and our program will not be able to
work unless we impute them. There is no good threshold that we
can use for data imputation. We find that the amount of data that
can safely be imputed without introducing additional bias is still
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Figure 6: Schematic diagram showing all steps of our correlation analysis.

a topic for discussion and some suggest that up to 30% missing
values can be imputed safely without biasing the data too much
[79, 87, 100]. Therefore, in our study, we first remove all attributes
that have more than 70% missing values. After that, we impute
the rest of the indicators with their corresponding algebraic means
[10]. After performing these steps, we are left with 209 attributes
(including Year, and Country) of the original 761 attributes.

We merged the processed disease outbreak data with the 209
attributes’ data using Year and Country attributes. As we were
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using the Year attribute for establishing an order in the dataset,
and the Country dataset to help combine disease outbreak data and
world bank data, after we got the merged dataset, we no longer
needed them. Therefore, we removed Year and Country from the
merged dataset. As a result, we are left with 208 attributes. This
dataset contains a ‘Disease’ attribute, which contains a value if
there’s an outbreak in a particular country in a particular year,
otherwise, it’s missing. Therefore, we fill up these missing ‘Disease’
attribute values with ‘no_recorded_outbreak’. Accordingly, after
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Figure 8: Point-biserial correlation between ‘Affected Organ Systems’ attribute’s values with socioeconomic indicators.
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Figure 9: Point-biserial correlation between ‘Affected Organ Systems’ attribute’s values with socioeconomic indicators.

gleaning the disease attributes data, we needed to make the at-
tribute values consistent in the whole dataset. In our study, disease
characteristics are categorical in nature and have more than two
distinct values. Therefore, we cannot convert them to binary for
the analysis. Instead, we use multi-hot encoding for them.

Figure 6 additionally shows the steps for our statistical analysis.
We perform these analysis in Python using NumPy, SciPy, Matplotlib,
and Pandas libraries [28, 38, 44, 60]. After multi-hot encoding of
disease attributes, we remove the redundant ‘Disease’ column and
perform point-biserial and spearman correlations. To be specific,
we perform a correlation between each socioeconomic indicator
and each of the values of a disease attribute. The output of this
correlation is a matrix, where each row corresponds to a value
of a certain outbreak attribute and each column corresponds to
a socioeconomic indicator. Aside from the correlation matrix, we
get a corresponding p-value matrix. The correlation matrix goes
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through two separate refinement steps. First, we replace all correla-
tion values smaller than 0.1 with 0s as they are too weak [82]. Then,
we remove all correlation values whose corresponding p-value is
greater than or equal to 0.05 [29].

For any statistical analysis, the choice of p-value is of significant
importance. It roughly indicates the probability of an uncorrelated
system producing datasets that have a correlation at least as extreme
as the one computed from the given datasets. The convention is to
take a certain threshold for the p-value and if the computed p-value
is less than the threshold, we reject the hypothesis that the dataset
is uncorrelated (i.e. null hypothesis). Otherwise, we fail to reject
the null hypothesis and as a result, our obtained correlation is said
not to be statistically significant. The convention is to take one of
0.01, 0.05, 0.001, and 0.005 as the threshold. A p-value less than 0.05
is a standard level for deciding that the alternative hypothesis has
evidence against the null hypothesis [29] and therefore, We use
0.05 as a threshold in our study.
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Figure 10: Bar plots showing distribution of point-biserial correlations between socioeconomic factors and outbreak attribute

values.

Previously, our null hypothesis was - “there is no relationship be-
tween socioeconomic indicators and different attributes of disease
outbreaks”. However, as we multi-hot encode each of the charac-
teristics of the diseases, the null hypothesis becomes the following
- “there is no relationship between socioeconomic indicators and
an attribute of disease outbreaks when the value of the attribute
is X. Here, X is one of the possible values of the attribute in con-
sideration. After completing the correlation analysis we get five
separate correlation matrices for each type of correlation. These
matrices are huge in size having up to 208 columns (maximum num-
ber of socioeconomic indicators) and 74 rows (“Symptom” disease
characteristic can have 74 values).
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4 RESEARCH FINDINGS

We obtained five different correlation matrices for each of the corre-
lation types totaling ten matrices after our analysis. We also found
that 192 out of 208 socioeconomic factors show a correlation in
the case of point-biserial and spearman correlation. The other 16
socioeconomic attributes do not show any significant correlation.
These 192 attributes are given in Figure 7. Here we analyze and
discuss only the results of point-biserial correlation only.

We use heat maps (Figure 8 and 9) to illustrate the correlations.
Figure 8 illustrates parts of one such matrix where we obtain a
point-biserial correlation of the ‘Affected Organ Systems’ attribute’s
values with socioeconomic indicators. Apparently, the obtained ma-
trices are massive in size even after our program removed redundant
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rows and columns (zero columns and rows). As socioeconomic indi-
cators’ names are long, we replace them with unique identifiers in
our figures. In Figure 8, we can see that there are valid correlations
between socioeconomic factors and outbreak attributes. Although
the absolute values in these correlations are low, which may indi-
cate a weak relationship, our obtained p-values affirm them to be
highly significant.

To find the more significant socioeconomic indicators in case of
disease outbreaks (e.g. more often correlated, shows higher correla-
tion, etc.), we summarize the number of correlated disease attribute
values for each of the socioeconomic indicators. We categorize
the obtained correlations into three intervals: abs(corr) < 0.2,
0.2 < abs(corr) < 0.3, and abs(corr) > 0.3 based on their ab-
solute values and use bar plots to show the distributions. Figure 10
illustrates the bar plots containing the distribution of point-biserial
correlations of socioeconomic indicators with outbreak attribute
values. We can clearly see that, according to point-biserial correla-
tion, 179 socioeconomic factors of the 208 show significant correla-
tions and most of the correlations are less than 0.2 in absolute value.
In fact, 87 of the 179 correlated socioeconomic factor does not show
correlations greater than or equal to 0.2 in absolute value. Now,
we illustrate the correlations of the other 92 socioeconomic factors
and analyze them in detail as they show stronger relationships.
Socioeconomic attributes obtained from the world bank have long
names, and therefore, we encoded each with a unique identifier
(Figure 7) and used those in our subsequent figures.

4.1 Affected Organ Systems

Figure 11 and 12 illustrate the point-biserial and Spearman cor-
relation between different values of the ‘Affected Organ Systems’
disease attribute and various socioeconomic factors. Here, DAx
indicates different values of the disease attribute in consideration.
We additionally show some summary statistics regarding the num-
ber of positive and negative correlations shown by the value of
the attribute. The blue lines correspond to positive correlations,
while the red ones correspond to negative correlations. All of these
correlations are greater than or equal to 0.2 in absolute value.

Accordingly, in Figure 11 we can see that, only 3 out of 11 values
of the attribute ‘Affected Organ Systems’ show absolute correlations
greater than or equal to 0.2. Below are the details.

e We notice that the disease outbreaks that cause problems
for ‘respiratory’ organ systems (e.g. lungs) are positively
correlated with 5 different socioeconomic factors: fixed tele-
phone subscriptions (45), methane emissions (43), fisheries
production (35), urban population (71), and the population
of ages 65 and above (59, 68, 69).

e We also observe that disease outbreaks that cause problems
for ‘digestive’ organ systems are associated positively with
13 socioeconomic attributes and negatively with 8. The posi-
tively correlated socioeconomic factors are vulnerable em-
ployment (4, 85), self-employment (87, 117), renewable en-
ergy consumption (39), adolescent and adult fertility (44,
82), birth rate (118), risk of maternal death and maternal
mortality ratio (6, 116), and the mortality rate of children
(24, 75, 93) while the negatively correlated socioeconomic
factors are the percentage of wage and salaried workers (78,
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106), electricity access (129), life expectancy (1, 73, 83), and
survival to age sixty-five (121), and immunization (20).
Lastly, we observe that disease outbreaks that cause prob-
lems for ‘nervous’ organ systems are positively associated
with 21 socioeconomic factors, while negatively associated
with 14. The positively associated factors represent vulner-
able employment (4, 70, 85), self-employment (87, 99, 117),
renewable energy consumption (39), adolescent and adult
fertility (44, 82), birth rate(118), the prevalence of anemia
among children and pregnant women (49, 81), risk of mater-
nal death and maternal mortality ratio (6, 116), the mortality
rate of children (24, 75, 93), the population of ages 0-4 (80,
114), and age dependency ratio (138, 139). The negatively cor-
related factors represent the percentage of wage and salaried
workers (78, 106, 111), electricity access (56, 129), life ex-
pectancy (1, 73, 83), the population of ages 15-64 (107, 108,
120), survival to age sixty-five (121), and immunization (20,
143).

4.2 Transmission Methods

Figure 13 and 14 shows the correlations between values of “Trans-
mission methods’ and various socioeconomic factors. Apparently,
only 3 out of 9 values of “Transmission methods’ show a significant
correlation with absolute value greater than or equal to 0.2 (Figure
13). Below are the details.

e We observe that the value ‘animal to human’, which indi-
cates whether the disease is spread from animals to humans
via contact, is positively correlated with 19 socioeconomic
factors. These socioeconomic attributes are related to urban
population (71), labor force (84), fixed telephone subscription
(45), cereal production (2, 141), fisheries production (13, 35),
COz and methane emission (27, 43, 128), and population (58,
59, 68, 69, 98, 103, 115, 119, 146).

e Besides, the disease outbreaks that transmit via ‘food con-
tamination’ and ‘water contamination’ are positively corre-
lated with 29 and 28 socioeconomic factors in order, while
both show a negative correlation with 15. The positively
correlated factors for both of the values are almost the same
representing self-employment (87, 99, 117), vulnerable em-
ployment (4, 70, 85), adolescent and adult fertility (44, 82),
birth rate(118), the prevalence of anemia (22, 49, 81), renew-
able energy consumption (39), risk of maternal death and
maternal mortality ratio (6, 116), the mortality rate (17, 24,
75, 77, 93), population (14, 65, 67, 76, 80, 110, 114), and age-
dependency ratio (138, 139). ‘Water contamination’ does not
show any correlation with an adult mortality rate (17). Both
attributes show a negative correlation with the same factors
which are related to the percentage of wage and salaried
workers (78, 106, 111), electricity access (16, 129), survival
to age sixty-five (121, 140), life expectancy (1, 73, 83), the
population of ages 15-64 (107, 108, 120), and immunization
(20, 143).

4.3 Infectious Agents

Figure 15 and 16 depicts the correlation of different values of the
attribute ‘Infectious agents’ with the socioeconomic factors. In
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Figure 11: Point-biserial correlation between different values of ‘Affected Organ Systems’ atrribute and various socioeconomic

factors.
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Figure 12: Spearman correlation between different values of ‘Affected Organ Systems’ atrribute and various socioeconomic

factors.

Figure 15, the attribute has 5 distinct values, only 2, ‘bacteria’ and
‘virus’, show significant correlations with an absolute value of at
least 0.2. Followings are the details.

e We observe that the disease outbreaks caused by viruses
are positively correlated with 5 socioeconomic factors. They
represent fixed telephone subscription (45), a population of
ages 65 and above (59, 68, 69), and an urban population (71).
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o The bacterial disease outbreaks are positively associated
with 38 factors and negatively associated with 32 factors.
The positively correlated factors are related to agricultural
employment (25, 72, 149), vulnerable employment (4, 70,
85), self-employment (87, 99, 117), renewable energy con-
sumption (39), forest rents (8), urban population growth (54),
adolescent and adult fertility (44, 82), birth rate(118), preva-
lence of anemia (22, 49, 81, 91), risk of maternal death and
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Figure 13: Pearson correlation between different values of ‘Transmission methods’ attribute and various socioeconomic fac-
tors.
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Figure 14: Spearman correlation between different values of “Transmission methods‘ attribute and various socioeconomic
factors.

maternal mortality ratio (6, 116), mortality rate (17, 24, 75, 114, 145), and age-dependency ratio (138, 139). The nega-
77, 93), death rate (50), population (14, 62, 65, 67, 76, 80, 110, tively correlated factors are about employment in service
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Figure 15: Point-biserial correlation between different values of ‘Infectious Agents’ attribute and various socioeconomic fac-

tors.

(3, 79, 105), employment in industry (9, 148), the percentage
of wage and salaried workers (78, 106, 111), mobile cellular
subscription (7), electricity access (16, 56, 129), primary ed-
ucation (19, 29), life expectancy (1, 73, 83), survival to age
sixty-five (121, 140), population (28, 31, 61, 64, 89, 107, 108,
120, 133, 134, 144), and immunization (20, 143), .

4.4 Symptoms

Figure 17 and 18 depicts the correlation of different values of the
attribute ‘Symptoms’ with the socioeconomic factors. We can see in
Figure 17 that only 20 values out of 74 show a significant correlation
with absolute values greater than or equal to 0.2.

Apparently, each of 57 correlated socioeconomic factors either
shows positive correlations or negative correlations only and not
both. Positively correlated socioeconomic attributes are about urban
population (71), age-dependency ratio (138, 139), self-employment
(87, 99, 117), agricultural employment (149), vulnerable employ-
ment (4, 70, 85), fisheries production (35), renewable energy con-
sumption(39), fixed telephone subscriptions (45), mobile cellular
subscription (7), NO2 and methane emissions (43, 125), adolescent
and adult fertility (44, 82), birth rate(118), prevalence of anemia (22,
49, 81, 91), risk of maternal death and maternal mortality ratio (6,
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116), mortality rate (17, 24, 75, 77, 93), death rate (50), and popula-
tion (14, 65, 67, 76, 80, 110, 114). The negatively correlated attributes
are related to the percentage of waged and salaried workers (78,
106, 111), electricity access (16, 56, 129), life expectancy (1, 73, 83),
survival to age sixty-five (121, 140), population (64, 89, 107, 108, 120,
133), and immunization (20, 143).

4.5 Carriers

Figure 19 and 20 illustrates the correlation between different values
of outbreak attribute ‘Carriers’ and various socioeconomic factors.

In Figure 19, we can see that only the value ‘Camel’ shows a
significant correlation with an absolute value greater than or equal
to 0.2 with two socioeconomic factors. The other 24 values show a
correlation less than that or do not show any significant correlation
at all. Here, the outbreaks, where ‘Camel’ is a carrier, are posi-
tively correlated with a male population (150) and are negatively
correlated with the female population (159).

4.6 Population

We find that various socioeconomic factors related to the popu-
lation show both positive and negative correlations. Hence, we
investigate population-related socioeconomic factors’ relationships
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Figure 16: Spearman correlation between different values of ‘Infectious Agents’ attribute and various socioeconomic factors.

- difficulty breathing (+ve: 5, -ve: 0)

- fever (+ve: 3, -ve: 0)

- anorexia (+ve: 18, -ve: 7)

- confusion (+ve: 11, -ve: 5)

- dehydration (+ve: 6, -ve: 3)

- dry mouth (+ve: 7, -ve: 4)

- extreme thirst (+ve: 11, -ve: 4)

- irregular heart beat (+ve: 10, -ve: 4)
- irritability (+ve: 3, -ve: 2)

DA10 - light sensitivity (+ve: 15, -ve: 6)
DA11 - low blood pressure (+ve: 10, -ve: 4)
DA12 - low urinating (+ve: 11, -ve: 4)
DA13 - nausea (+ve: 18, -ve: 6)

DA14 - shock (+ve: 14, -ve: 5)

DA15 - stiff neck (+ve: 17, -ve: 6)

DA16 - sunken eyes (+ve: 11, -ve: 4)

- no symptom (+ve: 6, -ve: 0)

DA18 - cough (+ve: 1, -ve: 0)

DA19 - malaise (+ve: 3, -ve: 0)

DA20 - vomiting (+ve: 1, -ve: 0) DA8 133

DA3 - anorexia (+ve: 12, -ve: 12)

DA4 - confusion (+ve: 8, -ve: 7)

DAS - dehydration (+ve: 5, -ve: 4)

DAG6 - dry mouth (+ve: 6, -ve: 6)

4 DAT - extreme thirst (+ve: 6, -ve: 8)

DA8 - irregular heart beat (+ve: 6, -ve: 7)
DAQ9 - irritability (+ve: 2, -ve: 2)

DAL10 - light sensitivity (+ve: 10, -ve: 9)
DAL11 - low blood pressure (+ve: 6, -ve: 8)
DA12 - low urinating (+ve: 6, -ve: 8)
DA13 - nausea (+ve: 11, -ve: 9)

DA14 - shock (+ve: 10, -ve: 9)

DA15 - stiff neck (+ve: 13, -ve: 12)

DA16 - sunken eyes (+ve: 6, -ve: 8)
DA17 - no symptom (+ve: 3, -ve: 1)
DA20 - vomiting (+ve: 1, -ve: 0)
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Figure 17: Point-biserial correlation between different values of ‘Symptoms’ attribute and various socioeconomic factors.
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DALl - fever (+ve: 19, -ve: 0) DALl - fever (+ve: 5, -ve: 0)
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Figure 18: Spearman correlation between different values of ‘Symptoms’ attribute and various socioeconomic factors.

DAl - camel (+ve: 1, -ve: 1)

159

DAl 150

Figure 19: Point-biserial correlation between different values of ‘Carriers’ attribute and various socioeconomic factors.

DA1 - bird (+ve: 1, -ve: 0)

DAl 30

Figure 20: Spearman correlation between different values of ‘Carriers’ attribute and various socioeconomic factors.

with various outbreak attributes’ values. Figure 21 depicts the cor- e We observe that indicators related to the percentage-based
relations between different disease outbreak characteristics and population of the age ranges, 0-14, 0-4, 5-9, and 10-14 (14, 67,
socioeconomic factors related to population. Such socioeconomic 76, 80, 114, 62, 145, 65, 110) show only significant positive
indicators can be categorized into percentage and total population correlations with different disease outbreak characteristics.
by age range and gender (123, 14, 136, 67, etc.), percentage and total o Besides, indicators relating to the total population of the age
population by gender (103, 159, 146, 150), total population (58, 34), ranges 15-64, 65 and above (119, 98, 115) also show signifi-
rural population (96, 168, 122), urban population (71, 54, 32), and cant positive correlations only, whereas percentage-based

refugee population (153). The followings are the details.
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1;0 DALl - bacteria (+ve: 10, -ve: 11)
119 pA2 - food contamination (+ve: 7, -ve: 3)

DA3 - water contamination (+ve: 7, -ve: 3)

10 DA4 - anorexia (+ve: 7, -ve: 6)
DAS5 - light sensitivity (+ve: 5, -ve: 3)
103 DAG - nausea (+ve: 7, -ve: 3)

DA7 - shock (+ve: 6, -ve: 3)
DAS8 - stiff neck (+ve: 7, -ve: 5)
DA9 - animal to human (+ve: 10, -ve: 0)

extreme thirst (+ve: 4, -ve: 3)
irregular heart beat (+ve: 4, -ve: 3)
low blood pressure (+ve: 4, -ve: 3)
low urinating (+ve: 4, -ve: 3)
sunken eyes (+ve: 4, -ve: 3)

DAL15 - respiratory (+ve: 4, -ve: 0)

virus (+ve: 4, -ve: 0)

159 DA17 - difficulty breathing (+ve: 1, -ve: 0)

fever (+ve: 1, -ve: 0)

1250 DA19 - nervous (+ve: 2, -ve: 3)
146 pa20 - confusion (+ve: 2, -ve: 2)
144 DA21 - dry mouth (+ve: 2, -ve: 2)
14 DA22 - no symptom (+ve: 1, -ve: 0)
133 DA23 - camel (+ve: 1, -ve: 1)

Figure 21: Correlation between different values of ‘Population’ attribute and various socioeconomic factors.

population by age ranges 15-64, 35-39, 40-44, 45-49, and 50-
54 (120, 107, 108, 89, 28, 133, 31, 64, 144, 61, 134) show only
negative correlations only.

e We also observe a significant positive correlation with fac-
tors relating to the total, male, and female population (103,
146, 58). However, the percentage-based female population
(159) shows a negative correlation different from the positive
correlation shown by the percentage-based male population
(150). Interestingly, they are both related to disease outbreaks
for which ‘camel’ is a carrier.

e Finally, we find factors related to the urban population (54,
71) are positively correlated with various attribute values of
the disease outbreaks.

5 DISCUSSION

In this section, we discuss the trends we discover from our study
and explain how we extend existing work done on the relationship
between disease outbreaks and socioeconomic indicators. In paral-
lel, we answer the research questions we set to explore earlier in
this paper.

5.1 Effect of Socioeconomic Indicators on
Disease Outbreaks

From our analysis, we see that various socioeconomic indicators
are either showing positive correlations or negative correlations.
In this regard, we observe the following trends after our analysis.

5.1.1 Employment, Literacy, and Industrialization.

e With the increase in employment related to agriculture, bac-
terial outbreaks increase in number. However, as employ-
ment in service and industry increases, bacterial disease
outbreaks decrease in number. These support prior work [4],
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where researchers find that the risk for the bacterial disease
named cholera in a district is negatively associated with high
urbanization levels in the district. One prior study [18] also
argues that contemporary processes of extended urbaniza-
tion, which include suburbanization, post-suburbanization,
and peri-urbanization, may result in increased vulnerability
to infectious disease spread. Besides, another study identi-
fies the most important factors such as the socioeconomic
level, climate and environment, and urbanization level as
the cause of the spread of a bacterial disease, meningococcal
meningitis [98]. Thus, our findings contribute to the litera-
ture extending outcomes reported by these prior researches.

e We find that employment in agriculture and occurrences
of outbreaks showing stiff neck as symptoms increase at
the same time. This finding contributes to previous research
[40, 73, 98] where researchers identify the most important
factors such as the socioeconomic level and social behavior
as the cause of the spread of meningitis, which shows stiff
neck as a symptom.

e As cereal production and total labor force increase, disease
outbreaks that spread from animals to humans (zoonotic
diseases) also increase. This finding extends prior work [1, 26,
36] on the association of socioeconomic factors, for example,
literacy, household income, social influence, knowledge gap,
risk perceptions, etc., with zoonotic diseases such as rabies
[26], swine flu [1], and bird flu [36].

e From prior work [6, 99], we see a distinct difference in ex-
posure rates of hepatitis, a digestive system disease in popu-
lations belonging to high and lower-middle socioeconomic
status. Our findings extend this as we find that, with an
increase in the percentage of wage and salaried workers, dis-
ease outbreaks causing digestive and nervous system prob-
lems decrease.
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o Outbreaks, which affect the organs of the digestive system
(e.g., liver) or nervous system (e.g., spinal cord), increase
with an increase of values of socioeconomic indicators such
as percentage of vulnerable employment (male, female, and
total) and percentage of self-employment (male, female, and
total). We also find that food-borne, water-borne, and bac-
terial disease outbreaks fall in number with the increase
in wage and salaried workers. Moreover, disease outbreaks
showing symptoms such as anorexia, light sensitivity, nau-
sea, shock, stiff neck, etc., fall in number, as the percentages
of wage and salaried workers increase. These findings extend
prior studies [42, 76] on finding out the effects of socioeco-
nomic and environmental factors on the outbreak of Dengue
fever (which shows as anorexia, light sensitivity, nausea, and
shock as symptoms). They identified six related factors rep-
resenting urbanization, poverty, accessibility, and vegetation
associated with transmissibility.

e Health literacy is a must to respond correctly in the time of
any health crisis, pandemic, epidemic, or in a short, disease
outbreak. Individuals having proper health literacy have the
ability to find, understand, and use information and services
to inform health-related decisions and actions for themselves
and others. Thus, literacy rate accelerates health literacy
[39, 58]. We find that if the literacy rate increases, the at-
tributes related to disease spread decrease and this phenom-
enon extends the studies [39, 58] related to pandemics and
epidemics. In recent times, lessons learned from COVID-19
such as quick hospitalization of elderly patients, using masks,
following lockdown and government guidelines, taking vac-
cination, etc. also provide the same insights [69, 109].

o As mobile cellular subscription per 100 people increases, bac-
terial disease outbreaks decrease. However, at the same time,
outbreaks show "cough" as symptom increases. In this regard,
from a previous study [91], we get the conclusion that the
usage of cellular phones is accountable for the development
of diseases such as brain tumors, male infertility, and hearing
function. In another study [102], Internet use was found to
have a direct positive relation to subjective health. In this
era of the Internet, bulk use of electronic devices drove us
to search the impacts of cellular subscriptions on disease
outbreaks. Thus, our findings extend the aforementioned
prior studies.

e From prior work [50, 52, 101], researchers find that due to the
greenhouse effect and the subsequently increased global tem-
perature, the prevalence of parasitic diseases such as dengue
and yellow fever would exacerbate. They also suggest that
global warming will cause changes in the epidemiology of in-
fectious diseases and vector-borne diseases such as malaria,
dengue, plague, and viruses will become more common. In
our study, we also find that with CO3 and methane emission,
the number of fixed telephone subscriptions and fisheries
production (captured and total) increase. Besides, in the same
case, disease outbreaks that affect parts of the respiratory or-
gan systems (e.g., lungs) or spread from animals to humans,
or show symptoms such as malaise and difficulty breathing
increase. Thus, our findings contribute to prior work.
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5.1.2  Life Expectancy and Mortality.

o Life expectancy of population decreases as outbreaks cause
digestive and nervous system problems to increase. Besides,
food-borne, water-borne, and bacterial disease outbreaks
also decrease life expectancy which resembles with previ-
ous studies where researchers found that water-borne [53]
and bacterial diseases [19, 86, 93, 97] increase mortality rate.
Accordingly, we also discover disease outbreaks show symp-
toms such as anorexia, confusion, dehydration, dry mouth,
extreme thirst, irregular heartbeats, irritability, light sensi-
tivity, low blood pressure, low urinating, nausea, shock, stiff
neck, or sunken eyes, further decrease life expectancy. Re-
searchers find the higher transmission of these symptoms
showing diseases such as dengue, Zika, and chikungunya
with poverty, population density and no access to improved
water sources from previous work [48, 64]. Our findings ex-
tend these researches by discovering positive associations
with life expectancy because of numerous symptoms of dis-
ease outbreaks.

o Several studies [32, 81, 85] show the most frequent causes of
maternal mortality were preeclampsia, thromboembolism,
sepsis, obstetric hemorrhage, and cardiovascular disorders.
Our study finds that outbreaks showing symptoms such as
dehydration, dry mouth, extreme thirst, irregular heartbeats,
low blood pressure, low urinating, or sunken eyes increase
the lifetime risk of maternal death, maternal mortality ratio,
the prevalence of anemia (among children, pregnant women,
and women of reproductive age), the mortality rate (under-5,
infant, and neonatal). Thus, we extend prior work. Further-
more, we discover that as an adolescent and adult fertility
rates and birth rates increase, outbreaks showing vomiting
as a symptom increase, whereas outbreaks show irritability
or malaise as symptoms increase with an increased lifetime
risk of maternal death and maternal mortality ratio. These
contribute to prior work [17, 53, 57, 59, 65, 75, 96] on relation-
ship between mortality of population and disease outbreak
attributes.

e As adolescent and adult fertility rate, birth rate, the life-
time risk of maternal death, maternal mortality ratio, renew-
able energy consumption, the mortality rate (under-5, infant,
and neonatal), the prevalence of anemia (among children,
pregnant women, and women of reproductive age), and the
age-dependency ratio of the young and total percentage of
working-age population increase, outbreaks, which affect
the digestive (e.g. liver), or nervous (e.g. spinal cord) organ
systems increase. These findings support prior work [5, 92]
where researchers show that anemia is a common factor
of hepatitis (a liver disease) and dementia (a nervous sys-
tem disease). Besides, outbreaks that transmit via food or
water contamination, or bacterial in nature, or show symp-
toms such as anorexia, confusion, light sensitivity, nausea,
shock, or stiff neck also increase with the increase in renew-
able energy consumption, the mortality rate (under-5, infant,
and neonatal), the prevalence of anemia (among children,
pregnant women, and women of reproductive age), and the



Revealing Influences of Socioeconomic Factors over Disease Outbreaks

age-dependency ratio of the young and total percentage of
the working-age population.

e In prior studies [56, 61, 84], researchers find a substantially
higher mortality rate with the increase in cholera, bacte-
rial pneumonia, and bacterial meningitis. Moreover, there
is an independent incremental association between delays
in administrating antibiotics and mortality from adult acute
bacterial meningitis [74]. Our findings contribute to these
studies as we discover that the death rate per 1000 people in-
creases, as outbreaks showing symptoms such as anorexia, or
nausea increase, and bacterial outbreaks increase in number.

5.1.3 Population. We observed some interesting relationships be-
tween populations of different age groups, urban populations, gen-
der, and various disease outbreak attributes. We present the rela-
tionships below.

o Geographical analysis and tracking of the spread of epi-
demics and other diseases present an important issue, which
is of great concern to healthcare professionals all over the
world. In this regard, we try to depict correlations between
attributes of different disease outbreaks and population-
related attributes such as urban population, rural population,
refugee population, etc. Many prior studies also tried to ex-
plore such relationships [24, 49, 67]. We found a positive
correlation between the factors related to the urban popula-
tion and various disease outbreaks attributes. For example,
viral outbreaks, outbreaks showing symptoms such as diffi-
culty breathing, or fever increase with the total urban pop-
ulation. These findings contribute to the literature having
existing studies [35, 57], where it was found that respiratory
diseases with difficulty breathing such as influenza trans-
missibility and mortality rate increase with the increase in
population density. In another study [25], researchers inves-
tigate the role of demographic patterns, urbanization, and
comorbidities on the possible trajectories of COVID-19 in
Ghana, Kenya, and Senegal. They found that compared with
Europe, Africa’s younger and rural population may limit the
severity of the epidemic. A similar type of result came out
for Bangladesh as well [77]. In our study, we also tried to find
out the impact of rural and urban populations on different
disease outbreak attributes.

e Besides, in our study, we observe different effects of age
groups of population on disease outbreaks as follows.

— As the percentage population over the age groups 0-14
increases, bacterial, food-borne, and water-borne disease
outbreaks increase. Prior research studies also report find-
ings similar to this. For example, existing studies [12, 53]
find that, as population density and percentages of the pop-
ulation with absolute poverty increase, water-borne dis-
eases such as cholera incidence and mortality rate increase.
Besides, outbreaks showing the symptoms of anorexia,
light sensitivity, nausea, shock, stiff neck, extreme thirst,
irregular heartbeats, low blood pressure, low urinating,
sunken eyes, confusion, or dry mouth also increase simi-
larly. At the same time, outbreaks affecting nervous sys-
tems rise in number. Besides, another study shows that
infectious disease mortality is relatively high in age group
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5-9, reaches a minimum in adolescence (age group 10-19),
then rises with age, with the growth rate gradually slowing
down from approximately age 75 [54].

— For the population age group of 15-64, we observe a mixed
correlation. We see that, as the male, female, and total
population of the age group 15-64 increase in absolute
number, disease outbreaks that spread from animals to
humans increase. On the other hand, as the population
percentage of the 15-64 age group increases, the occur-
rences of outbreaks that have an effect on the nervous
system, are bacterial in nature or spread via food or wa-
ter, or show symptoms such as anorexia, extreme thirst,
irregular heartbeats, light sensitivity, low blood pressure,
low urinating, nausea, shock, stiff neck, sunken eyes, con-
fusion, dry mouth, etc., decrease.

- Bacterial disease outbreaks decline, as the population of
the age group 35-54 increases. Besides, a reduction in dis-
ease outbreaks showing anorexia, or stiff neck as symp-
toms is noticed, when the female population of the age
group 35-49 increases. Viral disease outbreaks increase, as
the population of 65 and above increases. The same goes
for disease outbreaks spreading from animals to humans,
or affecting respiratory organ systems. As the total popu-
lation increase, outbreaks that transmit from animals to
humans also increase. Besides, outbreaks, where camels
play the role of a carrier, increase as the male population
increases, and decrease as the female population increases.

Characterizing disease outbreaks according to the different age
groups is a common trait in the domain of medical research. Our
determination of the correlation between different age groups with
disease outbreaks supports some prior studies related to the recent
pandemic COVID-19. Here, one research study tries to characterize
symptom patterns amongst young children [94]. Another study
supports our work by classifying susceptibility rates according to
age disparity and different age groups [21]. Besides, both age and
gender present variables that influence the clinical outcomes of
COVID-19. Individuals in the 0-40 age range and females under 60
are significantly less likely to develop a severe condition and die,
whereas males equal to or above 60 are more likely at risk of severe
disease and death. This is reflected in ICU admissions as already
reported in the literature [13]. Another prior study reveals that for
almost all infections over school-age children have the least severe
disease, and severity starts to rise long before old age [34]. Thus,
our findings contribute to these previous researches.

5.1.4 Immunization.

e In a prior study [70] where researchers used regression mod-
els to evaluate the achievements of China’s immunization
program between 1950 and 2018 show that most of the 11
vaccine-preventable diseases exhibited dramatic declines in
morbidity after their integration into the Expanded Program
on Immunization (EPI), while varicella and paratyphoid fever,
which were not integrated into the EPI, showed increased
morbidity. Researchers [23, 46, 47] further find, that older
adults and children receiving the influenza vaccine may have
a lower risk of influenza. Another previous research [71] as-
sessed receipt of flu immunization (2014-2019) by sickle cell
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disease (SCD) status among all Michigan children <18 years
of age using the statewide immunization registry, logistic
regression model. The researchers estimated that children
with SCD had higher annual flu immunization rates than
those without SCD, but >50% remain unimmunized. Vac-
cination reduced the overall attack rate to 4.6% from 9.0%
without vaccination, over 300 days in United States [62]. In
general, the immunization process stimulates the prevention
of cancer, reduces the secondary infection of any disease,
prevents antibiotic resistance, generates herd immunity, and
provides cost-effective preparedness for outbreaks [80]. Our
findings extend these prior researches as we discover that
as more and more people get immunized (DPT and measles),
and receive access to electricity, disease outbreaks that cause
digestive and nervous system problems decrease.

o We find that food-borne, water-borne, and bacterial disease
outbreaks also fall in number as more and more people get
immunized. Accordingly, the number of disease outbreaks
showing symptoms such as anorexia, confusion, dehydration,
dry mouth, extreme thirst, irregular heartbeats, light sensi-
tivity, low blood pressure, low urinating, nausea, shock, stiff
neck, sunken eyes decreases, with the increase in immuniza-
tion and electricity access. Moreover, lower uptake of vac-
cines was significantly associated with poorer educational at-
tainment, lower levels of employment, and lower household
income in prior studies [41, 43]. The association between
socioeconomic determinants and vaccine hesitancy/refusal
was also investigated in a prior work [11] where researchers
find rising levels of perceived economic hardship were asso-
ciated with vaccine hesitancy and lower parental education
was significantly associated with vaccine refusal. Our find-
ings contribute to these prior works on immunization and
socioeconomic indicators. These findings can serve as warn-
ings, and further explanations of socioeconomic inequities
are needed in universal healthcare systems.

5.2 Challenges

We faced significant challenges during the data accumulation, anal-
ysis, and result summarization phase. First, as our study is heavily
data-dependent, we needed to find credible sources of three types of
data - regarding the occurrences of disease outbreaks, attributes of
the infectious diseases in consideration, and various socioeconomic
factors. After we chose WHO: Disease Outbreak News [104] as the
source for our disease outbreak data, we scraped the website and
created a raw dataset. Our first challenge was to clean this raw
dataset and make it consistent so that automated tools can use it.
We found that sometimes Disease Outbreak News labels the same
disease by a different name. For example, meningococcal meningitis
and meningococcal disease are referring to the same disease caused
by Neisseria meningitidis bacteria, but sometimes it’s referred to
as meningitis, and other times meningococcal meningitis. Besides,
sometimes outbreaks were marked with a generic names at the
beginning of the outbreak, and later more reports on the same out-
break would indicate the name of the disease. Moreover, Disease
Outbreak News often publishes reports that indicate multi-country
outbreaks, and we could not scrap efficiently with any automated
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tools. Hence, We went through all of the articles published by Dis-
ease Outbreak News, fixed the aforementioned issues, and made
the dataset consistent.

After accumulating and fixing the disease outbreak data, we
needed to glean the attributes of the diseases appearing in the
disease outbreak dataset. We found no centralized source of infor-
mation for the attributes we considered. Therefore, we accumulated
them from fact sheets provided by WHO and CDC, different articles
published on the disease, and various informational websites such
as Malacards, Mayoclinic, etc. [30, 68] As this information was man-
ually collected, we needed to go through each of them and make
various attributes consistent throughout the dataset. We obtained
the data on different socioeconomic factors from the World Bank
database [107]. After exploring the data, we found that country
names are often inconsistent between this dataset and the outbreak
dataset, and therefore, we made them consistent. We also notice
that a significant number of attributes in the obtained dataset have
a lot of missing values. Hence, we researched how to deal with
them and finally removed the attributes which have more than 70%
missing values [79, 87, 100], and imputed the rest.

After data accumulation and cleaning were over, we faced more
challenges regarding formulating our problem which would allow
us to use simple correlation analyses. We found that to use such
techniques, we have to relate each of the values of various disease
attributes with each of the socioeconomic factors. Therefore, we
modified our null hypothesis accordingly. After calculating the
correlation in an aforementioned way, we ended up with huge
correlation matrices, and we faced our final challenge during the
summarization and presentation of these matrices. We divided the
obtained correlations into three separate groups and created bar
plots to visualize the distribution of each group as shown in Figure
10. We find that a significant amount of the correlations are less
than 0.2, and hence, we decided to do an exhaustive analysis of
the correlations equal to and above 0.2. We chose to illustrate the
aforementioned correlations in the graphical manner as discussed
in the relevant section.

Moreover, please note that, due to data scarcity, our attributes
are aggregated monthly, quarterly, or annually and we have taken
them on a country basis. This coarse granularity of data aggregation
might have introduced losing a lot of valuable in-depth insights if
they existed. Therefore, it also resulted in revealing weak correla-
tions. If we could accumulate very fine-grained data (at city-level
as well as daily or weekly data), we could expect to have a stronger
correlation within a window of time, if not all the time. This is why
our study is important in the sense that even the coarse-grained
data that we can get still point to meaningful correlation at a certain
level. Also, we acknowledge that we could have done multivariate
linear regression. However, we faced challenges in choosing a com-
bination of attributes to do multivariate analysis. We did not have
a foundation for such a categorical data analysis at large, which
needs another research effort in the future.

6 CONCLUSION

To make systems that can anticipate disease outbreaks more pre-
cisely, we need to consider all the factors contributing to them. In
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this study, we quantified the relationships between different dis-
eases’ characteristics and the socioeconomic factors that may play
arole in creating their outbreaks. We accumulated the relevant data
from various online sources such as WHO, CDC, World Bank, etc.
After that, we combined them according to our problem definition
and performed a correlation analysis to quantify the strength and
nature of their relationships. Our analysis shows that, like socioe-
conomic factors regarding CO2 and methane emission, fisheries
production, urban population, cereal production, telephone and cel-
lular subscription, etc. increase in value, outbreaks showing various
disease attributes we considered, increase in number. We also find
that increase in values of socioeconomic factors related to immu-
nization, electricity access, education, employment in service and
industry, etc. decreases the number of such disease outbreaks.

These correlations can help build better disease outbreak surveil-
lance and forecasting systems by providing suitable socioeconomic
indicators to augment disease outbreak data. Besides, our research
can help guide more incisive studies on the apparent correlations
we find between different disease outbreak characteristics and so-
cioeconomic factors. Moreover, systems for predicting the effect
of disease outbreaks on socioeconomic factors of a community
can also be benefited from the information we derived from our
obtained correlations.
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